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Introduction

§1 Introduction

[CGT]

N. T. Cuong, S. Goto and H. L. Truong, The equality I> = qI in
sequentially Cohen-Macaulay rings, J. Algebra, (379) (2013), 50-79.

In [CGT],

@ Characterized the sequentially Cohen-Macaulayness of R(I) where I
is an m-primary ideal which contains a good parameter ideal as a
reduction. ([Theorem 5.3]).

When is the Rees module R(M) sequentially Cohen-Macaulay?

Question 1.1 J
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Survey on seq C-M modules

§2 Survey on sequentially C-M modules

Let R be a Noetherian ring and M # (0) a finitely generated
R-module with d = dimzp M < oco. We put

Asshp M = {p € Suppp M | dim R/p = d}.

Then Vn € Z, AM,, the largest R-submodule of M with dimg M,, < n.
Let

S(M) = {dimg N | N is an R-submodule of M, N # (0)}
= {dimR/p |p € Assp M}
= {d1<d2<--'<dg:d}

where ¢ = $S(M).
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Seq C-M property in E*

Let D; = My, for 1 <Vi < ¢. We then have a filtration
DOZ(O)ngnggng:M

which we call the dimension filtration of M. Put C; = D;/D;_4 for
1 < Vi < /. Notice that dimg D; = dimp C; = d; for 1 < Vi < /.

Definition 2.1 ([Sch, St])

(1) M is a sequentially Cohen-Macaulay R-module
g C;is a C-M R-module for 1 < Vi < /.
(2) R is a sequentially Cohen-Macaulay ring
£ dim R < 00 and R is a sequentially C-M module over itself.‘
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Survey on seq C-M modules

Example 2.2

Let (R, m) be a Noetherian local ring, M # (0) a finitely generated
R-module with d = dimg M. Then

(1) d =1= M is sequentially C-M.

(2) M is C-M = M is sequentially C-M. The converse holds if M is
unmixed.

(3) R x M is a sequentially C-M ring < R is a sequentially C-M
ring and M is a sequentially C-M R-module.
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Survey on seq C-M modules

Example 2.3 ([Sch])

Let R = k[A] be the Stanley-Reisner ring of A over a field k. If A'is
shellable, then R is sequentially C-M.

Example 2.4

Let R be a Noetherian local ring, G a finite subgroup of Aut R.
Suppose that the order of G is invertible in R. If R is sequentially
C-M, then RY is sequentially C-M.
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Survey on seq C-M modules

Let

pEAssp M

be a primary decomposition of (0) in M, where Assg M /M (p) = {p}
for Vp € Assg M.

Fact 2.5 ([Sch])

The following assertions hold true.
(1) Ds = Miim r/psds,, M(p) for 0 < Vi < L.

(2) ASSR C; = {]J € ASSRM | dim R/p = dl} and
Assgp D; ={p € Assg M | dim R/p < d;} for 1 < Vi < /.
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Theorem 2.6 ([GHS])

Let M = {M;}o<i<t (t > 0) be a family of R-submodules of M s.t.
(1) My=(0)C M, C My C...C M, =M and

(2) dimg M;_y < dimg M; for 1 <Vi <t.

Assume that Assp M;/M; 1 = Asshr M;/M; | for 1 <Vi <t. Then
t=2F¢and M, = D, for 0 <Vi < /.

y
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Proposition 2.7 (NZD characterization)

Let (R, m) be a Noetherian local ring, M # (0) a finitely generated
R-module. Let x € m be a NZD on M. Then TFAE.

(1) M is a sequentially C-M R-module.
(2) M/xM is a sequentially C-M R/(x)-module and {D;/xD;}o<i<s
is the dimension filtration of M [z M.

Proof.
Since x € mis a NZD on C; and on D; for 1 <Vi </, so that we
get a filtration

]

v
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Survey on seq C-M modules

Remark 2.8

The implication (2) = (1) is not true without the condition that
{D;/xD,}o<i</ is the dimension filtration of M /zM.

For example, let R be a 2-dimensional Noetherian local domain of
depth 1 (e.g., Nagata's bad example). Then R/(x) is sequentially
C-M for x # 0, but R is not sequentially C-M.
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Localization of sequentially C-M modules

Theorem 2.9

Suppose that dim R/p = dim Rp/pRp for Vp € Assg M and
VP € Max R s.t. p C P. Then TFAE.

(1) M is a sequentially C-M R-module.
(2) Mp is a sequentially C-M Rp-module for VP € Suppy M.

Corollary 2.10

Let R be a finitely generated algebra over a field, M # (0) a finitely
generated R-module. Then TFAE.

(1) M is a sequentially C-M R-module.
(2) Mp is a sequentially C-M Rp-module for VP € Suppy M.

4
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Survey on seq C-M modules

Theorem 2.11

Let R=7Y" _, R, be a Noetherian Z-graded ring s.t. (R,0M) is an

H-local ring, M # (0) a finitely generated graded R-module. Then
TFAE.

(1) M is a sequentially C-M R-module.
(2) Moy is a sequentially C-M Ryn-module.

When this is the case, M, is a sequentially C-M R,-module for
Vp € Suppy M.
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Filtrations

§3 Filtrations of ideals and modules
Let R be a commutative ring.

Definition 3.1
F = {F,}nez is a filtration of ideals of R
FON

Q@ F), is an ideal of R,

Q F,D F,. forVneZ,

Q F,.F,CF,,, forVm,né€Zand

Q@ Fy=R.
Then we put
R=R(F)=) Ft"CR[t], R =R(F)=) Ft"CR[tt].
n>0 nez
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Filtrations

Let M be an R-module.

Definition 3.2
M = {M, },ez is an F-filtration of R-submodules of M
&L

@ M, is an R-submodule of M,

Q@ M, O M, for Vn € Z,

Q .M, C M., for Vm,n € Z and

Q My=M.

We set
R(M) = > t"® M, C R[t]@x M,

n>0

R(M) = Y t"@ M, C R[t,t"" )@y M.

nel
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Filtrations

Here

tn®Mn = {tn®x | T e Mn} - R[tat_l] ®@r M
for Vn € Z.
If F1 # R, then we put

G=G(F)=R/uR', G(M)

where u = ¢t~

R(M)/uR' (M)
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Filtrations

For the rest of this section, we assume that F; # R.

Lemma 3.3

Suppose that R is Noetherian and M is finitely generated. Then
TFAE.

(1) R(M) is a finitely generated graded R-module.

(2) R'(M) is a finitely generated graded R'-module.

(3) 3n,mg,...,n >0 (0>0) s.t. My, =" F, .M, for
VYn > max{ny,ng,...,ng}.
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Filtrations

@ The composite map
Y RIM) — RI(M) —= G(M)

is surjective and

Ker¢y = uR'(M) N R(M) = u[R(M)]+
where [R(M)]; = >, o t" ® M,.
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Filtrations

Assumption 3.4

@ R(F) a Noetherian ring

@ R(M) a finitely generated R-module

Then R is Noetherian and M is finitely generated.
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Filtrations

Proposition 3.5

Suppose that M # (0). Then the following assertions hold true.
(1) Ifd =dimg M < oo, then

d+1if 3pecAsshp M s.t. Fy € p,
d otherwise.

i ROM) = {

(3) If R is a local ring, then G(M) # (0), dimg G(M) = dimp M.
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84 Main results
Notation 4.1

@ (R,m) a Noetherian local ring
@ M # (0) a finitely generated R-module with d = dimp M
® F = {F,}nez a filtration of ideals of R s.t. F}; # R

M = {M, },cz an F-filtration of R-submodules of M

a=R(F)y =2 pso Fnl”
@ I a unique graded maximal ideal of R

@ R = R(F) a Noetherian ring

@ R(M) a finitely generated R-module
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Main results

Let 1 <7< /. We set
D; = {M,, N Di}nez, Ci={[(Mp,ND;)+ D;_1]/Di—1}nez.

Then D; (resp. C;) is an F-filtration of R-submodules of D; (resp. C;).
Look at the exact sequence

0— [Di—l]n — [Dz]n — [Cz]n —0
of R-modules for Vn € Z. We then have
0— 'R('Di_l) — 'R(’DZ) — 'R(Cl) —0

0— R/(Di_l) — R/(’Dz) — 'R/(CZ) — 0 and
0— g(D¢_1) — Q(D,) — Q(Cl) — 0.
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Theorem 4.2
TFAE.
(1) R/(M) is a sequentially C-M R’'-module.

(2) G(M) is a sequentially C-M G-module and {G(D;)}o<i<e is the dimension
filtration of G(M).

When this is the case, M is a sequentially C-M R-module.

Theorem 4.3

Suppose that M is a sequentially C-M R-module and F, ¢ p for Vp € Assp M.
Then TFAE.

(1) R(M) is a sequentially C-M R-module.

(2) G(M) is a sequentially C-M G-module, {G(D;)}o<i<: is the dimension
filtration of G(M) and a(G(C;)) < 0 for 1 < Vi < £.

When this is the case, R'(M) is a sequentially C-M R'-module.

v
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Main results

Lemma 4.4 (cf. [CGT])

(1) {R'(D;)}o<i<¢ is the dimension filtration of R'(M).
(2) If Fy € p for Vp € Assp M, then {R(D;)}o<i<¢ is the dimension
filtration of R(M).
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Main results

Theorem 4.2
TFAE.
(1) R'(M) is a sequentially C-M R’'-module.

(2) G(M) is a sequentially C-M G-module and {G(D;)}o<i<¢ is the
dimension filtration of G(M).

When this is the case, M is a sequentially C-M R-module.
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Main results

Proof of Theorem 4.2

Look at the exact sequence
0—R(C)— R[t,t 1@rCi — X =0
of graded R’-modules for 1 < i < /.
Since R/(C;) is C-M and X, = (0), we have R[t,t7!] ®r C; is C-M.

Therefore M is sequentially C-M, because C; is C-M.
[
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Towards a proof of Theorem 4.3

Fact 4.5 ([F])

Let I be an ideal of R and t € Z. Consider the following two

conditions.

(1) 3€>0s.t. I“H. (M) = (0) for Vi # t.

(2) My is a C-M R,-module and t = dimpg, M, + dim R/p for
Vp € Suppry M butp P 1.

Then the implication (1) = (2) holds true. The converse holds, if R
is a homomorphic image of a Gorenstein local ring.
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Lemma 4.6 (Key lemma)

Suppose that Hi,(G(M)) is finitely graded for Vi # d. Then
Hin(R(M)) is finitely graded for Vi # d + 1.

Proof of Lemma 4.6 (Sketch)

It is enough to show that
3 >0 st a®“Hiy(R(M)) = (0) for i #d+ 1.

To see this, let P € Suppg R(M) s.t. P 2 aand P C 9.
Then we can check that R(M)p is C-M and

d+1= dimRP R(M)P + dlngm/PRgm

Thanks to Fact 4.5, Hi;(R(M)) is finitely graded.
T ——




Main results

We set
a(N) = max{n € Z | [Hy(N)], # (0)}
for a finitely generated graded R-module N of dimension ¢.

Theorem 4.7

TFAE.

(1) R(M) is a C-M R-module and dimgr R(M) =d + 1.

(2) Hip(G(M)) = [Hyp(G(M))]-1 for Vi < d and a(G(M)) < 0.
When this is the case, [Hiy(G(M))]-1 = H: (M) for Vi < d.

m
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Main results

Corollary 4.8

Suppose that M is a C-M R-module. Then TFAE.

(1) R(M) is a C-M R-module and dimg R(M) =d + 1.
(2) G(M) is a C-M G-module and a(G(M)) < 0.
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Main results

Theorem 4.3

Suppose that M is a sequentially C-M R-module and F ¢ p for
Vp € Assg M. Then TFAE.

(1) R(M) is a sequentially C-M R-module.

(2) G(M) is a sequentially C-M G-module, {G(D;)}o<i<e is the
dimension filtration of G(M) and a(G(C;)) < 0 for 1 < Vi < /.

When this is the case, R'(M) is a sequentially C-M R’-module.
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Proof of Theorem 4.3

R (M) is a sequentially C-M R-module
< R(C;) = R(D;)/R(D;_1) is a C-M R-module for 1 < Vi </
<= G(C;) is a C-M G-module, a(G(C;)) <0 for 1 <Vi < /¢

<= G(M) is a sequentially C-M G-module, {G(D;)}o<i< is the
dimension filtration of G(M) and a(G(C;)) < 0 for 1 < Vi < /.
[
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Seq C-M property in EY

§5 Sequentially C-M property in E"
Let R=)_ o Ry be a Z-graded ring. We put
F, = ZRk for Vn € Z.
k>n

Then F), is a graded ideal of R, F = {F), }ncz is a filtration of ideals of R
and F} := Ry # R.

Let E be a graded R-module with E,, = (0) for Vn < 0. Put

E(n) = Z E; for Vn € Z.
k>n

Then E, is a graded R-submodule of E, £ = {E(;)}nez is an
F-filtration of R-submodules of E.

Then we have

R=G(F) and E =G(&).
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Seq C-M property in EY

Assumption 5.1
© R=)_ ., R, a Noetherian Z-graded ring

e E # (0) a finitely generated graded R-module with
d=dimrp F < 00

We set

R :=R(F) and E*:=R(E).
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Seq C-M property in EY

Lemma 5.2

Then the following assertions hold true.
(1) R% is a Noetherian ring.
2) E" is a finitely generated graded R*-module.

(2)
(3) R/(E) is a finitely generated graded R'-module.
(4)

4) Suppose that 3 p € Asshp E s.t. Fy ¢ p. Then
dimp; Ef = dimp E + 1.

(5) dimgs R/(E) = dimp E + 1.
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Seq C-M property in EY

Let
Dy=0)C D1 C...CDy=F

be the dimension filtration of E. Put C; = D;/D;_;, d; = dimg D;
for 1 < Vi<V,

Then D; is a graded R-submodule of E for 0 < Vi < /.
Let 1 <4 < /. Then we get the exact sequence

0— [Di—l](n) — [Di](n) — [Oi](n) —0

of graded R-modules for Vn € Z.
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Seq C-M property in EY

Therefore

0— R,(Di_l) — R,(DZ) — RI(CZ) — 0 and
of graded modules, where D; = {[D;|(n) }nez, Ci = {[Cil(n) }nez.-

Lemma 5.3

(1) {R/(D;)}o<i<: is the dimension filtration of R'(£).

(2) If Fy € p for Vp € Assp E, then {R(D;)}o<i<¢ is the dimension
filtration of R(E).
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Seq C-M property in EY

Proposition 5.4
TFAE.

(1) R'(E) is a sequentially C-M R’-module.
(2) Eis a sequentially C-M R-module.

Naoki Taniguchi (Meiji University)
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Lemma 5.5

Suppose Ry is a local ring, E is a C-M R-module and 3p € Asshg E
st. Fy ¢ p. Then TFAE.

(1) E* is a C-M Ri-module.

(2) a(F) <0.

Proof of Lemma 5.5 (Sketch)

Let P = mR + R, where m denotes the maximal ideal of Ry. Then
P D F; and

E=G(E)=G(p), R=0G=G(Fp)

since R (Eqy/Em+t1)) = (0), Ry(F/Fny1) = (0) for Vn € Z.
The assertion comes from the above isomorphisms.

4
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Seq C-M property in EY

Theorem 5.6

Suppose that Ry is a local ring, E is a sequentially C-M R-module
and Fy € p forVp € Assg E. Then TFAE.

(1) EF is a sequentially C-M R-module.
(2) a(Cy) <0 for1 <Vi<U/.
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Application

§6 Application —Stanley-Reisner algebras—

Notation 6.1
o V={1,2,...,n} (n > 0) a vertex set
@ A a simplicial complex on V' s.t. A # )
@ F(A) a set of facets of A

m = 4§F(A) (> 0) its cardinality
® S =k[X1,Xo,...,X,] a polynomial ring over a field k

(] IA:(XilXig"'XiT‘{i1<i2<"'<ir}¢A)

@ R = k[A] = S/Ia the Stanley-Reisner ring of A
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Application

Definition 6.2

A simplicial complex A is shellable
def

< either m =1 or m > 1, then 3F, Fy, ..., F,, € F(A) s.t.
(1) F(A)={F,F,...,F,}
(2) (F1, Fy, ..., Fi_1) N (F;) is pure and

dim (Fy, Fa, ..., F,_1) N (F;) =dim F; — 1 for 2 < Vi < m.

Remark 6.3

If A is shellable, then we can take a shelling order
Fl,FQ,. 5 .,Fm € .F(A) s.t. d1mF1 > dlmF2 > e > dlmFm
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Application

We now regard R = ano R, as a Z-graded ring and put

I, ::ZRk:mn for Vn e Z

k>n

wherem:= R, =) R, Then T = {I,},cz is an m-adic
filtration of R and I} # R.

Proposition 6.4
If A is shellable, then R'(m) is a sequentially C-M ring. J

Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules November 21, 2014 43 / 49



Introduction Survey on seq C-M modules Filtrations Main results Seq C-M property in Ef

Application R

eferences

Remark 6.5

p DI forVp € AssR <= F # () for VF € F(A)
— A £ {0}.

Theorem 6.6

Suppose that A is shellable with shelling order

Fl,FQ,...,Fm € F(A) s.t. dlmF1 > d1mF2 > 2> dlmFm and

A # {0}. Then TFAE.
(1) R(m) is a sequentially C-M ring.

(2) Eitherm =1 orm > 2, then dim F; — 1 > §F (A N Ay) for
2 S \Z) S m, where Al S <F1,F2, 5 o .,E_1>, AQ = <E>
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Application

Apply Theorem 6.6, we get the following.

Corollary 6.7

Suppose that dim F,,, > 2. If (F}, Fy, ..., F;_1) N (F;) is a simplex
for 2 < Vi < m, then R(m) is a sequentially C-M ring.

o F
Naoki Taniguchi (Meiji University)
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Example 6.8
Let A = (Fy, Fy, F3), where I} = {1,2,3}, F; = {2,3,4} and
F3 = {4.5}. Then A is shellable with the numbering
.F(A) = {Fl,Fg,Fg}. Then
<F1>m<F2>7 <F17F2>m<F3>

are simplex, so that R(m) is a sequentially C-M ring.
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Example 6.9

Let A = <F1,F2,F3,F4>, where F; = {1,2,5}, = {2,3}, F; = {3,4}
and Fy = {4,5}. Then A is shellable with the numbering

F(A) ={F1, Fy, F3, Fy}. We put Ay = (Fy, Fy, F3), Ay = (Fy). Then

ﬂf(Al ﬂAg) =2=dimFy — 1,

so that R(m) is not a sequentially C-M ring by Theorem 6.6.
1
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Application

Thank you very much for your attention!
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